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Are we ready for precision cross-correlation?
• Is our forward modeling sufficiently good for the high-precision era?

• How non-linear evolution affects lensing observables and cross-correlation?

• Is the Born (single deflection) approximation good enough?
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Fig. 4. Contributions of different wavenumbers k (in Mpc−1) to the power spectrum of the lensing potential for a concordance !CDM model.
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Fig. 5. Correlation of the lensing potential with the CMB temperature.

weakly sensitive to late time non-linear evolution. The contributions from different wavenumber ranges are shown
in Fig. 4.

The cross-correlation with the temperature can be worked out using an analogous derivation [67], and a typical result
is shown in Fig. 5. On very large scales the correlation is significant because of the ISW contribution to the large-scale
temperature anisotropy caused by time varying potentials along the line of sight. However on smaller scales where the
ISW contribution is much smaller, and the lensing potential becomes almost totally uncorrelated to the temperature.
The deflection power spectrum peaks at l∼60, at which point the correlation is !10%. For most applications, for
example computing the lensed CMB power spectra, this small correlation can be safely neglected [68]. However the
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Figure 5. Post-component-separation noise curves for the combination of six SO LAT (27–280 GHz) and seven Planck (30–353 GHz)
frequency channels, assuming a wide SO survey with f

sky

= 0.4, compared to the expected signal (black). The left (right) panel shows CMB
temperature (E-mode polarization). Foregrounds and component separation are implemented as in Sec. 2.4 and Sec. 2.5.1, considering
multipoles up to `

max

= 8000. The blue (orange) curves show the component-separated noise for the SO baseline (goal) noise levels,
assuming standard ILC cleaning. The dashed and dash-dotted curves show various ILC foreground deprojection options, described in
Sec. 2.5.1. The tSZ deprojection penalty is larger than that for CIB deprojection because of (i) the relatively high noise at 225 GHz
compared to 93 and 145 GHz and (ii) the lack of a steep frequency lever arm for the tSZ signal as compared to the CIB. The dotted
orange curves show the no-foreground goal noise, i.e., when SO LAT and Planck channels are combined via inverse-noise weighting. This
is the minimal possible noise that could be achieved. The temperature noise curves fluctuate at low-` due to the use of actual sky map
realizations, as opposed to the analytic power-spectrum models in polarization.
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Figure 6. ⇤CDM CMB lensing power spectrum (black) compared
to SO LAT lensing noise curves, N

L , reconstructed assuming a po-
larization only (Pol-only) or minimum variance (MV) combination
of estimators in the case of standard ILC for both CMB tempera-
ture and polarization cleaning (solid and dashed curves), and tSZ
and fiducial CIB SED deprojection for CMB temperature clean-
ing and fiducial polarized dust and synchrotron SED deprojection
for CMB polarization cleaning (dot-dashed curve). SO baseline
and goal scenarios are shown in blue and orange, respectively, and
compared to the Planck lensing noise (Planck Collaboration 2018e,
yellow). SO will be able to map lensing modes with S/N > 1 to
L > 200.

of ⌧ = 0.06± 0.01 (Planck Collaboration 2016o; neglect-
ing the small change in the mean value and the improve-
ment to �(⌧) = 0.007 with the 2018 results; Planck Col-
laboration 2018d). For the LAT, the Planck data are
included in the co-added noise curves over the sky com-
mon to both experiments. Additionally, for the largest
angular ranges not probed by SO, we include TT , TE

Table 3
Forecasts of ⇤CDM parameter uncertainties for SO compared to

Plancka

Parameter Planck SO-Baseline+Planck
⌦bh

2 0.0001 0.00005
⌦ch

2 0.001 0.0007
H

0

[km/s/Mpc] 0.5 0.3
109As 0.03 0.03
ns 0.004 0.002
⌧ 0.007 0.007

aThe ‘Planck’-only constraints reported here are from the final
2018 Planck data (Planck Collaboration 2018d). We check that
our Planck forecast code (using T/E at 2  `  29 with f

sky

=
0.8, TT/TE/EE at 30  `  2500 with f

sky

= 0.6, and  at
8  L  400 with f

sky

= 0.6) yields similar results, except for
small di↵erences: we find �(H

0

) = 0.6 km/s/Mpc, �(109As) =
0.04, �(⌧) = 0.009.

and EE from Planck over 80% of the sky at 2  `  29.
For the sky area not accessible to SO, we add an ad-
ditional 20% of sky from Planck in the angular range
30  `  2500. This produces an overall sky area of
60% which is compatible with the area used by Planck
after masking the Galaxy. For the Planck specifications
we follow the procedure described in Allison et al. (2015)
and Calabrese et al. (2017), scaling the overall white
noise levels to reproduce the full mission parameter con-
straints. For reference, we give forecast constraints on
the ⇤CDM parameters in Table 3 for SO combined with
Planck, compared to the published results from Planck
alone (TT,TE,EE+lowE+lensing, Planck Collaboration
2018d). Both cases use temperature, polarization, and
lensing data. In this paper we will refer to ‘SO Base-
line’ and ‘SO Goal’ forecasts; these all implicitly include
Planck.
In many cases we combine SO forecasts with DESI

and LSST. For LSST we consider an overlap area of

Lewis & Challinor 
2006

Simons Observatory 
collaboration 2018
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How to include non-linearities?
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Figure1.Theonionuniverse:adecompositionofthelightcone
thatmimicsthedatastructureinphotometricgalaxysurveys.
Thesimulateduniverseisrenderedasadiscretesetofprojected
matterdensityshpericalshellsinthelightconearoundtheob-
server,i.e,atthecenteroftheconcentricspheres.2Dspherical
shellsareequallyspacedincomovingtimeandpixelizedusing
theHealpixtesselationofchosenangularresolution.Forclarity,
inthisfigureweonlyshowoneofthehemispheres(i.ehalfthe
onionuniverse)forseveralofthelowestredshiftshells.

rootofthenumberofindependentrBAOcells:

∆BAO≡
∆rBAO

rBAO
≃

„

r3
BAO

V

«1/2

(1)

whereVisthesampledvolume,andwehaveassumedGaus-

sianerrors(withnegligibleshot-noise)overthefirsttwo
BAOwiggles(seealsoAnguloetal2008).Thus,forthe

onionshellatz=0.6weestimate∆BAO≃1/
√

1000≃3%.

Accordingtothisruleofthumb,wecangetto0.6%relative
errorinmeasuringrBAOusingthewholeMICEsimulation

volume,ascomparedto9%withtheMilleniumsimulation.

2.2Compressionfactor

Tobuildthelight-conewithsufficientaccuracy,wehaveused
200comovingsimulationoutputs.Eachoutputtakes250

Gbytes,sothetotalstoragerequiredisabout49Terabytes.
Ifwematchthespatialwidthoftheonionshells(aswehave

done)tothetimelagbetweentheoutputsthatareused

tobuildthelight-conewewillhaveequivalentinformation
forapplicationsthatdonotrequireangularorredshiftres-

olutionbetterthanthatprojectedontothepixelmaps.We

haveproduced200suchHealpixmaps,eachoccupies201
Megabyte,whichrepresentsatotalof39Gigabytes.Thus,

thereistotalcompressionfactorofabout1300whenusing

Figure2.Onionshelldensitymapatz≃0.036(thiscorresponds
toacomovingdistanceofr=108±8Mpc/h)

Figure3.Onionshelldensitymapatz≃0.15(comovingdis-
tancer=439±9Mpc/h)
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• Non-linearities fully accounted

• Flexible post-processing method

• Capitalize on LSS survey 
simulation effort

Fosalba+08

Calabrese, Carbone, GF+ (2015) 
GF, Calabrese, Carbone (2018)

We use the following definition for the convergence field K(k) at the k-th shell,

K(k)(n̂) =
4πG

c2

DA(ηk)

(1 + zk)2
∆(k)

Σ (n̂), (2.13)

to rewrite Eq. (2.11) as
∇2

n̂
Φ(k)(n̂) = 2K(k)(n̂). (2.14)

The lensing potential on the sphere is related to K via Eq. (2.14), and it can be easily
computed by expanding both sides of the Poisson equation in spherical harmonics, obtaining
the following algebraic relation between the harmonic coefficients of the two fields:

Φℓm =
2

ℓ(ℓ + 1)
Kℓm. (2.15)

The monopole term in the lensing potential does not contribute to the deflection field: there-
fore to avoid any divergence in the above equation we can safely set to zero Φℓm for ℓ = 0
in all calculations. The quantity K is directy computed when the matter distribution in the
shell is radially projected onto the spherical map; as discussed in Sect. 3.2, it is useful to
define an angular surface mass density ∆θ

Σ(n̂) as the mass per steradians,

∆θ(k)
Σ (n̂) =

∫ ηk+∆η/2

ηk−∆η/2
(ρ − ρ̄)

DA(η̃)2

(1 + z̃)3
dη̃. (2.16)

such that Eq. (2.13) can be rewritten as:

K(k)(n̂) =
4πG

c2

1 + zk

DA(ηk)
∆θ(k)

Σ (n̂). (2.17)

Finally, the vector field α(n̂) will be synthesised, as described in [8, 9], from the spherical
harmonic components of the potential in terms of spin-1 spherical harmonics. The multiple-
plane lens formalism can be also applied to exploit the effective or single-plane approximation
to lens the CMB. Eqs. (2.4) and (2.5) can be discretised into the following sums,

ψeff(n̂) =
∑

j

DA(ηs − ηj)

DA(ηs)
Φ(j), (2.18)

κ(n̂) =
∑

j

DA(ηs − ηj)

DA(ηs)
K(j), (2.19)

where we used the previous definitions of quantities on the j-th lens. In the same framework,
the convergence κ can be seen as just a weighted projected surface density [41, 44]:

κ(θ) =
3H2

0Ωm,0

2c2

∫

dη δ(η,θ)
DA(ηs − η)DA(η)

DA(ηs)a(η)
, (2.20)

where δ is the 3D matter density at radial distance η and angular position θ, DA(ηs) is the
position of the lensing source at the last scattering surface and a(η) is the scale factor at
η. Based on the definition in Eq. (2.20), the angular power spectrum of the convergence
becomes

Cκκ
ℓ =

9H4
0Ω2

m,0

4c4

∫ ηs

0
dηP (k, z)

(

DA(ηs − η)

DA(ηs)a

)2

, (2.21)
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Higher-order corrections: non-Gaussianities

10

FIG. 4. Slices through the weighted convergence bispectrum (L
2

L
3

)

1/2 bL1L2L3
/(C

L1
C

L2
C

L3
)

1/2 for L
1

= 10
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the tree-level LSS bispectrum and the bottom row shows the non-linear fit of Scoccimarro and Couchman [41] (“SC”). The left plots show the
post-Born contributions, the middle plots the large-scale structure contributions and the right plots the cancellations that occur due to negative
contributions from the post-Born bispectrum in approximately flattened configurations, i.e. L

1

+ L
2

⇠ L
3

. For approximately equilateral
configurations, i.e. L

1

⇠ L
2

⇠ L
3

, we find an enhancement of the total bispectrum. The grey dashed line denotes the b = 0 contour. In
the equilateral limit, the tree-level LSS bispectrum is enhanced by a factor of ⇠ 2 by the post-Born corrections and the non-linear SC LSS
bispectrum by a factor of ⇠ 1.5.

This agrees with the galaxy lensing result of Ref. [10] when restricted to observing the convergence (trace of the distortion
tensor) directly.

Non-linear structure growth will also give additional contributions from the large-scale structure bispectrum, which in the
Limber approximation has the form [42]

bL1L2L3
= L2

1L
2
2L

2
3

Z �s

0
d�

W (�,�s)
3

�4
B   (L1/�, L2/�, L3/�;�). [LSS] (4.7)

The potential bispectrum on the right-hand side of this equation can be approximated by the tree-level result for the fractional
matter density perturbations [43]:

b���(k1, k2, k3;�) = 2F2(k1,k2; z)P��(k1, z(�))P��(k2, z(�)) + cyc. perm., (4.8)

where

F2(k1,k2; z) =
5

7

A(k1, k2; z) +B(k1, k2; z)
k1 · k2

2k1k2

✓
k1
k2

+

k2
k1

◆
+ C(k1, k2; z)

2

7

(k1 · k2)
2

k21k
2
2

(4.9)

and k2 (k, z) ⇡ ��(z)�(k, z) with �(z) ⇡ k2
p
P  (k, z)/P��(k, z) approximately independent of k. The baseline tree-level

result has A = B = C = 1 in Eq. (4.9), so that F2 is independent of redshift, but even in this case we use the non-linear P��

from halofit to improve accuracy [41]. We also consider extended fitting formulae for A, B and C from Scoccimarro and
Couchman [41] (denoted “SC”) to assess the order of magnitude of fully non-linear corrections beyond tree level5

5 We use a dewiggled form for n ⌘ d lnP��,lin/d ln k in the fitting function following Ref. [44]. Ref. [44] (“GM”) also provide updated fits, but they are
not validated at high redshift and may behave in an unphysical way there, so we restrict to the original fit of Ref. [41]. Using the updated fits would slightly
increase the LSS bispectrum signal, but not change results qualitatively. At L = 1000 the equilateral lensing bispectrum is enhanced by ⇡ 2⇥ compared
to tree level using the SC fit, and ⇡ 2.5⇥ in the GM fit, but the difference is much less for folded configurations (where the non-linear enhancement at
L
1

= 1000 is less than 20%).
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result has A = B = C = 1 in Eq. (4.9), so that F2 is independent of redshift, but even in this case we use the non-linear P��

from halofit to improve accuracy [41]. We also consider extended fitting formulae for A, B and C from Scoccimarro and
Couchman [41] (denoted “SC”) to assess the order of magnitude of fully non-linear corrections beyond tree level5

5 We use a dewiggled form for n ⌘ d lnP��,lin/d ln k in the fitting function following Ref. [44]. Ref. [44] (“GM”) also provide updated fits, but they are
not validated at high redshift and may behave in an unphysical way there, so we restrict to the original fit of Ref. [41]. Using the updated fits would slightly
increase the LSS bispectrum signal, but not change results qualitatively. At L = 1000 the equilateral lensing bispectrum is enhanced by ⇡ 2⇥ compared
to tree level using the SC fit, and ⇡ 2.5⇥ in the GM fit, but the difference is much less for folded configurations (where the non-linear enhancement at
L
1

= 1000 is less than 20%).

Pratten & Lewis (2016)

Beck, Fabbian, Errard (2018), 
Fabbian, Calabrese, Carbone (2018

3

FIG. 1: Equilateral bispectrum: a field can be decomposed into plane-wave modes, and the three components with wavevectors
that form an equilateral triangle may have di↵erent relative signs. The sign of the bispectrum tells you which combination
of signs is more likely (on average gives a positive or negative product of the three modes). A positive reduced bispectrum
corresponds to being likely to have waves combining to have strong overdensities surrounded by larger areas of milder under-
density. A negative equilateral bispectrum corresponds to being likely to have concentrated underdensities surrounded by areas
of milder overdensity. Note that in 3D the figures extend into the page, and hence the positive bispectrum corresponds to
concentrated overdense filaments surrounded by larger areas of milder underdensity.

FIG. 2: A snapshot of non-linear large-scale structure from the millennium simulations [12]. Dynamical non-linear collapse
of very dense filaments (surrounded by milder underdensities, voids) generates a large positive roughly equilateral density
bispectrum.

during the growth of large-scale structure, as shown in the famous simulation of Fig. 2. Since it is the overdensities that
are concentrated, not the underdensities, the non-linear large-scale structure density field will have a large positive
equilateral component to its bispectrum (for a perturbation theory calculation see Ref. [13]).

Of course exactly equilateral triangles are a very special case, but there are many shapes that are close to equilateral
and these will also look similar, but correspond to slightly elliptical concentrated overdensities or underdensities.
As the bispectrum triangle becomes more flattened, these turn into a line, or in 3D concentrated overdensity or
underdensity pancakes (planes); see Fig. 3. Note that shapes that are qualitatively distinct in 3D may not be after
projection into 2D: for example if an purely equilateral shape is present in 3D, projecting down to 2D will give



Name TalkName TalkGiulio Fabbian Challenges in CMB lensing and LSS cross-correlations

Primer on higher-oder bias measurements 

• Exploit our numerical simulation setup to isolate single sources of bias at all scales

• Lens primordial CMB realizations (or galaxies) with different combination of 
deflection fields

• Subtract average of the same CMB skies lensed with Gaussian deflections 

• Cross-correlate with external tracers
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Bias on lensing reconstruction from higher-order

 6

Noiseless

CMB-S4

κκω+κκω

Beck, Fabbian, 
Errard (2018)

in C��
L [39, 40]. The N

(0)

L and N
(1)

L biases can be calculated analytically on the full sky
using a fiducial model [33, 39, 40], but can be calculated more generally with a realization-
dependent estimator [41–43] and Monte Carlo simulations [41, 42]. AL: Not sure why citing
bias hardening papers here?

The formalism derived in the previous section assumes that all the non-Gaussianity in
the CMB is entirely due to the lensing effect and that the lensing potential is a Gaussian field.
However, this is just an approximation, and if the lensing potential has nonzero higher-order
correlations, there are additional terms involving four-point functions of lensed CMB fields
that create distinct biases. Ref. [25] showed that if the � field is non-Gaussian Eq. (2.6)
acquires an additional bias term of order O

h
(C��

L )

3/2
i

referred to as N (3/2) so that

ˆC��,ABCD
L ⇡ C��

L +N
(0),ABCD
L +N

(1),ABCD
L +N

(3/2),ABCD
L +O

h
(C��

L )

2

i
. (2.7)

For a given noise level in the lensed CMB maps, N (3/2)
L is mostly negative and its amplitude

varies as a function of scale and estimator used. The detailed shape and sign of N (3/2)
L depends

by non-trivial cancellation effect between the post-Born bispectrum and the bispectrum in-
duced by the non-linear matter evolution (LSS term), as these two contributions mainly have
an opposite sign as explained in Ref. [20]. Assuming the noise level of future experiments, the
TT reconstruction is the most sensitive to N

(3/2)
L , while EB is the least affected estimator.

The minimum variance combination of all the possible quadratic estimators has a bias that
is 1-5% of the theoretical C��

L .
The N

(3/2)
L bias survives even in cross-correlation with the true � or an independent

tracer. If the reconstructed lensing field is correlated with an external matter tracer 100%
correlated with CMB lensing, N (3/2)

L for cross-correlation is reduced by a factor of ⇡ 2 [26,
27]. However, the LSS bispectrum can become larger at lower redshift, and the post-Born
contribution smaller, significantly reducing the cancellation, leading to a fractional bias that
is substantially larger.

2.3 CMB lensing cross-correlation

The lensing potential can be related to the lensing convergence  in the weak lensing regime
through the Poisson equation  = �r2�/2, so that in the harmonic domain

LM =

L(L+ 1)

2

�LM . (2.8)

Gravitational lensing directly probes the Weyl gravitational potential, but in general rela-
tivity (and after matter domination) the potential can be related directly to the comoving
density perturbation � via the Poisson equation. Observed angular galaxy densities as a func-
tion of redshift depend on a variety of effects (including redshift distortions, magnification
bias, velocity and potential effects), but can also be approximated at some level as a biased
tracers of the comoving density perturbation. It is therefore convenient to rewrite the lensing
observables in terms of convergence field so that the cross-correlation between CMB lensing
and LSS tracers in a particular redshift bin can all be written in the Limber approximation
as

CAB
L ⇡

Z
d�

�2

WA(�)WB(�)P�

✓
k =

L+ 1/2

�
, z(�)

◆
, {A,B} 2 {g,CMB,z} (2.9)

– 5 –



Name TalkName TalkGiulio Fabbian Challenges in CMB lensing and LSS cross-correlations

Neutrino mass estimation

• Shape of the bias highly dependent on the maximum multipole included in the 
lensing reconstruction

• Bias on cosmological parameters at 1-2 sigma: neutrino mass more affected!

• Combination of data set potentially more robust but possible inconsistencies 
due to biases

Beck, Fabbian, Errard 
(2018)
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Name TalkName TalkGiulio Fabbian Challenges in CMB lensing and LSS cross-correlations

What about CMB lensing - LSS cross-correlation?

• Post-Born and LSS bispectrum term have different redshift dependencies!

• What happens if we “break the symmetry” of CMB lensing through cross-
correlation with LSS tracers?

 8

12

FIG. 7. Scaling with redshift of the LSS (SC fit, dotted) and post-Born (solid, positive, and dashed, negative) contributions to the convergence
bispectrum for equilateral and folded shapes. At low redshifts the post-Born contributions are much smaller than LSS, but for CMB lensing
(z = z⇤) they are coincidentally of comparable order of magnitude on relevant scales. The bispectra here are plotted normalized by the
convergence power to remove the total growth in lensing signal with redshift, so the curves represent a measure of the amount of non-
Gaussianity.

where

F(L1, L2) ⌘ �
Z �s

0
d��2

[W (�,�s)�(z(�))]
3
P��(L1/�, z(�))P��(L2/�, z(�)). (4.12)

The squeezed structure of Eq. (4.10) is then inherited by the convergence bispectrum,

bLSS (L1, L,'L) =

✓
17

7

� 1

2

d lnF(L1, L)

d lnL
+ cos(2'L)


4

7

� 1

2

d lnF(L1, L)

d lnL

�◆
F(L1, L) +O

✓
L2
1

L2

◆
, (4.13)

where L1 ⌧ L, with the short mode L ⌘ (L2 �L3)/2. In the post-Born case we have analogously

bPost-Born(L1, L,'L) = �2Ms(L1, L)+
dMs(L,L1)

d lnL
+

✓
�2Ms(L,L1)� 2Ms(L1, L) +

dMs(L,L1)

d lnL

◆
cos 2'L+O

✓
L2
1

L2

◆
.

(4.14)
On the scales of interest the coefficients of the monopole and quadrupole part of the post-Born spectrum are both negative, but
in Eq. (4.13) they are both positive. We can therefore expect a partial cancellation between the contributions to the bispectrum.
Although the approximate results of Eqs. (4.10) and (4.13) are based on a series expansion, since the next term is O(L2

1/L
2
)

they provide quite a good qualitative fit to the full result for L & 2L1.
Whether there is total reduction depends on the particular triangle shape, since the relative size of the quadrupolar contribution

is much larger in the post-Born case. In the particular case where the long and short modes are orthogonal (cos 2' = �1)
we have the post-Born contribution b ⇡ 2Ms(L,L1) which is positive, and LSS contribution b ⇡ 13

7 F(L1, L), also
positive. However, when the modes are parallel (cos 2' = 1) they have opposite sign: b ⇡ �4Ms(L1, L)� 2Ms(L,L1) +

2

dMs(L,L1)
d lnL , b ⇡ (3 � d lnF(L,L1)

d lnL )F(L,L1). Contributions for cos 2' ⇠ 1 are larger than cos 2' ⇠ �1 because the
monopole and quadrupole parts contribute with the same sign, and hence the net effect is that the post-Born bispectrum reduces
the total signal compared to that from the tree-level large-scale structure bispectrum alone. This is illustrated by typical numerical
results for semi-squeezed shapes are shown in Fig. 6 as a function of the small-scale mode.

The shape of the bispectrum and partial cancellation with the LSS signal can easily be understood in simple cases. A converg-
ing lens causes contraction of the ray bundle, so if there are two lens events the ray area is smaller at the second lensing event,
the difference in potential gradients across the beam is lower, and hence there is less effect from the second lens than if the first
lens had not been there: mathematically, (1 � )2 > 1 � 2, so combining two converging lenses has less effect than adding
the convergences linearly. An overdensity will have positive convergence, so consider combining a large lens and a small lens
both of positive convergence: since the combined effect is smaller than obtained by linearly adding the two convergences, there
is an anticorrelation between the large-scale lens convergence and the amplitude of the total small-scale convergence observed
(corresponding to a negative bispectrum). On the other hand density perturbations grow faster the more dense they are, so there is
a positive correlation between large overdensities and the magnitude of small scale perturbations on top of them (corresponding
to a positive bispectrum).

Pratten & Lewis (2016)
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Galaxy lensing signal validation: power spectrum

 9

z=1

z=0.6
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Galaxy lensing signal validation: bispectrum

 10

6

as

↵(k)(�(k)) =
2

c2

Z �k+��

�k���
d�

r (�(k),�)

DA(�k)
. (22)

↵(k) is easily computed starting from the convergence
field of each shell (k) using a spin-1 spherical harmonic
transform [34, 61] in the E and B decomposition

1

↵(k),E
`m =

2(k)
`mp

`(`+ 1)
1

↵(k),B
`m = 0. (23)

The latest operation requires the computation of the

spherical harmonic coe�cients (k)
`m using a fast spherical

harmonic transform up to a given cut-o↵ in power `
max

.
The choice of `

max

for each di↵erent shell is optimized to
ensure the total deflection is computed with sub-percent
precision for scales ` . 8000.The magnification matrix
follows straightforwardly from Eq. (21) as

AN
ij (✓,�N ) = �Kij �

N�1X

k=0

Dk,N

DN
U (k)
ip (�(k),�k)A

(k)
pj (✓,�k),

(24)
where N is the number of planes necessary to reach
the source at comoving distance �N and Uij is the ma-
trix of the second derivatives of the gravitational poten-
tial, @ /@�i@�j . Uij can be computed easily as deriva-
tives of the component of the spin-1 field ↵(k) (see Ap-
pendix A of FCC18). In Eq. (24) we use the notation
Dk,N ⌘ DA(�N � �k) and Dk ⌘ DA(�k) for simplicity.
Implementing Eq. (24) in numerical simulations becomes
quickly prohibitive for a large number of lens planes and
large sky fraction. FCC18 adopted the multiple lens ap-
proach of [62], who showed that the equation can be
rewritten in a more e�cient form that requires one to
store in a memory for a given kth iteration just the posi-
tion of the light rays at the two previous positions �(k�2)

and �(k�1),

�(k)=

✓
1� Dk�1

Dk

Dk�2,k

Dk�2,k�1

◆
�(k�2) (25)

+
Dk�1

Dk

Dk�2,k

Dk�2,k�1

�(k�1) � Dk�1,k

Dk
↵(k�1)(�(k�1)).

By di↵erentiating with respect to ✓ as in Eq. (2), we ob-
tain the recurrence relation for the magnification matrix

A(k)
ij =

✓
1� Dk�1

Dk

Dk�2,k

Dk�2,k�1

◆
A(k�2)

ij (26)

+
Dk�1

Dk

Dk�2,k

Dk�2,k�1

A(k�1)

ij � Dk�1,k

Dk
U (k�1)

ip A(k�1)

pj .

This algorithm was originally developed in the context
of galaxy lensing, but adapted to spherical geometry in
[61] and developed first in [28, 56] for CMB lensing. This
approach is also convenient to derive the magnification
matrix and lensing observables in the Born approxima-
tion that we will use later to isolate the contribution com-
ing from post-Born e↵ects. Assuming the background

distortion, the first-order magnification matrix is

A(N),1st
ij (✓,�s) = �Kij �

N�1X

k=0

Dk,N

DN
U (k)
ij (✓,�k). (27)

We note that the Uij matrix is symmetric because mixed
derivatives commute and thus the rotation, !, is identi-
cally zero.

B. Impact of the LSS bispectrum

FCC18 carried out an accurate characterization of the
post-Born corrections on , ! and lensed CMB power
spectra and compared extensively with their analytical
predictions derived in [23, 27, 38, 53, 63]. However,
the analysis did not investigate in detail the impact of
the nonlinear evolution of large-scale structures and how
simulation properties match with analytical predictions
of the higher-order statistics of the  field. Below we
present additional validation tests performed to assess
the reliability of these simulations in modeling higher-
order statistics of post-Born corrections and nonlinear
LSS evolution. We limit our analysis to the statistics of
the  field and its cross-correlation with !. Higher-order
statistics of the curl mode of the deflection field beyond
the mixed ! bispectrum [23], which appear at higher
order in the perturbative expansion, are lacking theoret-
ical predictions. The measurement of the ! and !!
bispectrum in the simulations used in this work through
its e↵ect on lensed B-modes power spectrum was pre-
sented in FCC18, together with the measurement of the
post-Born induced curl mode on lensed CMB power spec-
tra. We refer the reader to that work for a more in-depth
discussion and comparison with theoretical predictions.

1. Higher-order statistics of the CMB convergence

To verify the accuracy of the simulations in reproduc-
ing the expected level of non-Gaussianity in , we com-
pare its skewness as measured in the simulations with
the values obtained by contracting the predicted theoreti-
cal bispectrum including LSS nonlinearity and post-Born
corrections. The definition of skewness given a pixelized
map of a scalar field, X, is

S
3

[X] = hXXXi = 1

N
pix

N
pixX

p

X3

p , (28)

where p is the pixel index and N
pix

the total number of
pixels in the map. Following [64, 65], we compute the
skewness in terms of the reduced bispectrum bL

1

L
2

L
3
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with corresponding variance dominated by the disconnected six-point function
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In particular, the skewness of the Born-approximated
convergence, F , obtained from the first-order mag-
nification matrix, provides a measurement of the
LSS-induced bispectrum. The bispectrum of the
convergence computed using the multiple lens ray
tracing algorithm, R, receives a contribution from the
LSS-induced bispectrum as well as from the post-Born
corrections induced bispectrum. The di↵erence of
the skewness of R and F gives thus a direct mea-
surement of the collapsed post-Born-induced bispectrum.

We use the formulas presented in [66] and [23] to
compute the bispectrum of  due to LSS nonlinearity
(at tree level in density perturbations or adopting the
nonlinear fitting formula from [67]) and post-Born
e↵ects, respectively. In Fig. 1 we show a comparison
between the skewness measured in the low-pass-filtered
simulations and their expected theoretical value as a
function of the maximum multipole cuto↵ used in the
calculations. We find a good agreement between sim-
ulation and theoretical expectations for the post-Born
bispectrum part, confirming the findings of FCC18 on
the level of the lensed CMB B-mode power spectrum.
For this observable, the post-Born  bispectrum is
the dominant correction while the contribution of the
curl mode in terms of the ! bispectrum is negligibly
small (see also [27]). The LSS skewness agrees well with
theoretical expectation on scales 75 . L

max

. 2000 and
starts deviating outside this range, yet still with reason-
able agreement. On the largest scales, the discrepancy
might be due to the adoption of Limber approximation
or by spurious numerical correlations induced by the
box size replication during the light-cone construction
or simply sample variance of the matter bispectrum.
In fact, [68] measured the three-dimensional matter
bispectrum from the same N -body simulation used for
this work and found an excess of power at low values
of k . 0.1 Mpc�1h for both squeezed and equilateral
configurations. These scales contribute significantly to
the signal on angular scales ` . 100 (see e.g. [4]) and
could be responsible of the excess of skewness observed
when only such scales are included. Although in FCC18
the replication procedure was shown to produce accurate
results on the large scales of C

L and no significant
spurious excess of power was observed, we tested the

FIG. 1. Comparison of the skewness for di↵erent cuto↵ values
of the convergence multipoles. The theory curves are com-
puted using the tree-level expression of the LSS convergence
bispectrum including the Scoccimarro & Couchman fit of [67],
as well as post-Born corrections of the b and b!(+) bis-
pectra of [23]. Only the absolute values are shown; negative
values are marked by a dashed line or triangular marker.

stability of our results on lensing reconstruction with
respect to the minimum multipole employed in the
analysis. We found negligible di↵erences when excluding
CMB angular scales `  100.

At angular scales L
max

& 2000 we expect to see dis-
crepancies due to the limitation of the fitting formulas
used to compute the theoretical expectation as well as
theoretical uncertainties in the modeling of the nonlinear
matter power spectrum used to compute the theoretical
expectation of the skewness. In particular, at L ⇡ 2000,
the CMB convergence receives a non-negligible contri-
bution from structures at scales k & 1 Mpc�1h [4, 28]
and on these angular scales uncertainties on the matter
power spectrum are already of the order of 15% [69]. The
use of nonlinear fitting formulas improves the agreement
with simulation results with respect to the tree-level bis-
pectrum. We note that we do not investigate possible
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with corresponding variance dominated by the disconnected six-point function
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In particular, the skewness of the Born-approximated
convergence, F , obtained from the first-order mag-
nification matrix, provides a measurement of the
LSS-induced bispectrum. The bispectrum of the
convergence computed using the multiple lens ray
tracing algorithm, R, receives a contribution from the
LSS-induced bispectrum as well as from the post-Born
corrections induced bispectrum. The di↵erence of
the skewness of R and F gives thus a direct mea-
surement of the collapsed post-Born-induced bispectrum.

We use the formulas presented in [66] and [23] to
compute the bispectrum of  due to LSS nonlinearity
(at tree level in density perturbations or adopting the
nonlinear fitting formula from [67]) and post-Born
e↵ects, respectively. In Fig. 1 we show a comparison
between the skewness measured in the low-pass-filtered
simulations and their expected theoretical value as a
function of the maximum multipole cuto↵ used in the
calculations. We find a good agreement between sim-
ulation and theoretical expectations for the post-Born
bispectrum part, confirming the findings of FCC18 on
the level of the lensed CMB B-mode power spectrum.
For this observable, the post-Born  bispectrum is
the dominant correction while the contribution of the
curl mode in terms of the ! bispectrum is negligibly
small (see also [27]). The LSS skewness agrees well with
theoretical expectation on scales 75 . L

max

. 2000 and
starts deviating outside this range, yet still with reason-
able agreement. On the largest scales, the discrepancy
might be due to the adoption of Limber approximation
or by spurious numerical correlations induced by the
box size replication during the light-cone construction
or simply sample variance of the matter bispectrum.
In fact, [68] measured the three-dimensional matter
bispectrum from the same N -body simulation used for
this work and found an excess of power at low values
of k . 0.1 Mpc�1h for both squeezed and equilateral
configurations. These scales contribute significantly to
the signal on angular scales ` . 100 (see e.g. [4]) and
could be responsible of the excess of skewness observed
when only such scales are included. Although in FCC18
the replication procedure was shown to produce accurate
results on the large scales of C

L and no significant
spurious excess of power was observed, we tested the

FIG. 1. Comparison of the skewness for di↵erent cuto↵ values
of the convergence multipoles. The theory curves are com-
puted using the tree-level expression of the LSS convergence
bispectrum including the Scoccimarro & Couchman fit of [67],
as well as post-Born corrections of the b and b!(+) bis-
pectra of [23]. Only the absolute values are shown; negative
values are marked by a dashed line or triangular marker.

stability of our results on lensing reconstruction with
respect to the minimum multipole employed in the
analysis. We found negligible di↵erences when excluding
CMB angular scales `  100.

At angular scales L
max

& 2000 we expect to see dis-
crepancies due to the limitation of the fitting formulas
used to compute the theoretical expectation as well as
theoretical uncertainties in the modeling of the nonlinear
matter power spectrum used to compute the theoretical
expectation of the skewness. In particular, at L ⇡ 2000,
the CMB convergence receives a non-negligible contri-
bution from structures at scales k & 1 Mpc�1h [4, 28]
and on these angular scales uncertainties on the matter
power spectrum are already of the order of 15% [69]. The
use of nonlinear fitting formulas improves the agreement
with simulation results with respect to the tree-level bis-
pectrum. We note that we do not investigate possible
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Cross-correlation signal validation
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z=1

z=0.6
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Biases for cross-correlation studies

• CMB lensing cross-correlation with galaxy shear/convergence: enhanced bias!

• Post-Born corrections: reduce the N3/2 

• Somewhat not (that) important for galaxy lensing

Fabbian, Lewis et al. 
(in prep.)
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Euclid X CMBS4
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Fabbian, Lewis et al. (in prep.)
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Theoretical perturbative predictions
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Fabbian, Lewis et al. (in prep.)

where fWX is the lensing-induced coupling between Fourier modes and gWX is an optimal
filtering weight. Explicit expressions for both these quantities can be found in [32]. The
unlensed spectra appearing in fWX , gWX are replaced by lensed ones to avoid the N (2) bias
[36], and we use the separable (but somewhat suboptimal) where CTE

` is set to zero in the
weights gTE . In the last equation the tilde denotes lensed quantities and expt subscript
indicates observed quantities.

A.3 Cross-correlation N (3/2)
bias

The cross-correlation hˆ��
ext

i between the reconstructed CMB lensing potential ˆ� with an
external LSS tracer �

ext

as well as its auto-correlation is sensitive to the presence of a non-
zero bispectrum in the lensing potential generated by nonlinear structure formation and post-
Born corrections. Hereafter we assume that the external LSS tracer is uncorrelated with the
unlensed CMB (i.e. we neglect correlation induced by the Integrated Sachs-Wolfe (ISW),
SZ and other effects). This should be a good approximation if the CMB maps have been
adequately cleaned of non=primordial contributions. We will also assume that there are no
primordial B-modes, i.e. B (l) = 0. The detailed shape of N

(3/2)
L bias in cross-correlation

depends on the quadratic combination used to reconstruct CMB lensing. Ref. [25] derived
expressions for the TT estimator and we extend the calculation to the general reconstruction
estimators below. We use the flat sky approximation for analytic results, which should be
adequate on scales where there is sufficient signal to noise for the bias to be important. The
leading effect of non-Gaussianity is expected to come from the bispectrum, and we neglect
other higher-order correlators.

The N
(3/2)
L bias on the cross-power spectrum C

ˆ�WX�
ext

L will depend on terms of the form

h ˜W ˜X�
ext

iO[(C��
)

3/2
]

= h�W �X�
ext

i+ hW �2X�
ext

i+ h�2WX�
ext

i. (A.13)

Following Ref. [25] the first term on the right hand side is called “A1”, and the second two terms
“C1”. These are all contractions allowed for the cross-spectrum, so that the full expression
for the cross-spectrum up to fifth order in LSS perturbations is4

hC ˆ�WX�
ext

L i = C��
ext

L +N
(3/2)
A1,WX

(L) +N
(3/2)
C1,WX

(L) +O(�5

), (A.14)

where the new bispectrum-induced biases are

N
(3/2)
A1,WX

= �AWX
L

Z

l

1

B�
ext

��
(L, l

1

, l
3

)

⇥
Z

l

2

gWX(l

2

,L)C
¯W ¯X
l
5

l

1

· l
5

l

3

· l
5

hW (l

5

, l
2

)hX(l

5

, l
4

) (A.15)

and

N
(3/2)
C1,WX

=

AWX
L

2

Z

l

1

B�
ext

��
(L, l

1

, l
3

)

⇥
Z

l

2

gWX(l

2

,L)
⇣
CW ¯X
l
2

hX(l

2

, l
4

) + C
¯WX
l
2

hW (l

2

, l
4

)

⌘
l

1

· l
2

l

2

· l
3

. (A.16)

4
An additional N (2)

bias of order (C��)2 also arises, but is approximately removed by using lensed CMB

power spectra in the normalization AL and in the weights g [36, 38].
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Simulation comparison
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Fabbian, Lewis et al. (in prep.)
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Redshift dependency and SNR

 16

Fabbian, Lewis 
et al. (in prep.)

Fabbian, Lewis et 
al. (in prep.)
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Fabbian, Lewis et al. (in prep.)

Z =0.6

Z =2.0
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Euclid galaxy density X CMBS4

 19

Fabbian, Lewis et al. (in prep.)

PRELIMINARY!
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Post-Born power spectrum puzzle
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PRELIMINARY!

Need to pay attention to modelling in simulation for density cross-correlation

LOS effect to be investigated

Fabbian, Lewis et al. (in prep.)
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Take away message: higher-order lensing effects are important in future 
experiment!

Will be detected with good significance for CMBS4 and CMBS4xEuclid

Will affect galaxy shear self-calibration (intrinsic alignment)

We developed and tested end-to-end galaxy convergence simulations 
correlated with our CMB lensing pipeline

Good consistency with power spectrum and higher order statistics

We measured higher-order biases for CMB cross-correlation with LSS 
tracers (convergence and density).

We developed a theoretical framework to predict the value of the biases and 
account for them.


