Orsay, 21 March 2019

CMB XC - Euclid SWG Updates on Simulations

M. Calabrese (OAVdA), C. Carbone, G. Fabbian, M. Baldi

Starting point: Nbody numerical simulations What do we have?

(Big) N-Body simulation for CMB Cross

DEMNUni (C. Carbone) volume: (2 Gpc/h) and N : 2 x 2048 (CDM+v) particles baseline Planck cosmology + neutrinos & DE

DUSTGRAIN (M. Baldi) volume: (2 Gpc/h) and N : 2 x 2048 (CDM+v) particles baseline Planck cosmology + f(R) gravity with massive neutrinos

(Smaller) N-Body sims for covariances

	Number of sims	Cosmology (background)	BoxSize / NumPart	Number of snapshot (+FoF, SubGroups, M200,)
LCDM (Euclid official)	50 sims	OmeBr = 0.05 OmNeu = 0.0 OmCDM = 0.27 OmLam = 0.6800	Box Size = 1 Gpc/h Num Part = 1024^3	63 z in [0,99]
LCDM + Mnu= 0.16	50 sims	OmeBr = 0.05 OmNeu = 0.0 OmCDM = 0.27 OmLam = 0.6800	Box Size = 1 Gpc/h Num Part = 1024^3	63 z in [0,99]

Covariances project: MC, C. Carbone, G. Fabbian, ...

Light-cone production: map making

Available healpix maps

Particle Maps	•	50 x 63 Surface Mass Density Maps (for each snapshot/redshift, for each nbody simulation) 50 x 63 CMB-Convergence Maps (for each snapshot/redshift, for each nbody simulation) \rightarrow 50 <u>CMB-Convergence Integrated Map</u> (in Born approx. for each nbody simulation) 50 CMB-Lensed maps (via LensPix)
Grid maps	• • • •	50 CMB-lensing potential & ISW/RS (in LCDM) 50 CMB-lensing potential & ISW/RS (in Mass(nu)=0.16 eV) 50 CMB-Lensed maps (via LensPix) (in LCDM) 50 CMB-Lensed maps (via LensPix) (in Mass(nu)=0.16 eV) 50 WL maps with sources placed at z=8,5,2,1 (in LCDM) 50 WL maps with sources placed at z=8,5,2,1 (in Mass(nu)=0.16 eV)

Covariances from Grid potential maps First steps.

Cov. Matrix: k-CMB auto-spectrum [LCDM]

 $C_L CMB$ -Convergence DEMNUni \rightarrow Covariance Matrix

11 Bins in multipole, L = {20,50,100,250,500,750,1000,1500,2000, 2500,3000}

Nside Convergence maps = 2048 Number of Simulations = 50

LCDM and Mnu=0.16

<u>Figures are Correlation Matrix</u> (Covariances normalized to diagonal variances)

k-CMB auto-spectrum [LCDM vs M(nu)=0.16 eV]

cross k-CMB X WL(z=2) [LCDM vs M(nu)=0.16 eV]

WL(z=2) auto-spectrum [LCDM vs M(nu)=0.16]

11

Signal-to-noise from covariances Measuring significance.

From Covariances to Signal-to-Noise Ratio (SNR)

from Nbody Simulations → Light-cone and 2D maps of matter	Observable	k-CMB	WL(z=1)	WL(z=2)	WL(z=5)	WL(z=8)
	k-CMB					
\downarrow from maps \rightarrow angular	WL(z=1)					
power spectrum and covariances	WL(z=2)		$(S/N)^2 = \sum_{\ell,\ell'}^{\ell_{\max}} C_{\ell}^{XY} \operatorname{Cov}_{\ell\ell'}^{-1} C_{\ell}^{XY} C_{\ell}^{-1} C_{\ell}^{-$			$-\frac{1}{2}C_{\mu}^{XY}$
from covariances \rightarrow	WL(z=5)					$\ell\ell' \subset \ell'$
signal-to-noise ratio	WL(z=8)					

M. Calabrese, SWG CMB-XC, Orsay 21 March 2019

Lensing pot. reconstruction

from Nbody Simulations \rightarrow Light-cone and 2D maps of matter

from CMB unlensed power spectrum \rightarrow Lensed CMB field using LensPix and lensing potential maps from sims.

from lensed CMB field → lensing potential reconstruction via Hu&Okamoto

Covariances from particle maps Towards tomography.

Corr.Matrix R_{ij} DEMNUni N_{sims} :50 20 50 100 250 500 750 Multipole, L 1000 1500 2000 2500 3000 4000 5000 50 250 500 750 10001500 2000 2500 3000 4000 5000 20 100 Multipole, L

C_L CMB-Convergence DEMNUni → Covariance Matrix 13 Bins in multipole, L = $\{20,50,100,250,500,750,1000,1500,2000,$ $2500,3000,4000,5000\}$ Nside Convergence maps = 4096 Number of Simulations = 50

LCDM and Mnu=0.16

0.90

0.75

0.60

0.45

0.30

0.15

0.00

<u>Figures are Correlation Matrix</u> (Covariances normalized to diagonal variances)

M. Calabrese, SWG CMB-XC, Orsay 21 March 2019

 $C_{I}CAMB \rightarrow Covariance Matrix$

 C_1 DEMNUni \rightarrow Covariance Matrix

Lensed CMB Covariances: TT and EE

EE: CMB + Lensed(DEMNUni) \rightarrow Covariance Matrix on EE spectrum

TT: CMB + Lensed(DEMNUni) \rightarrow Covariance Matrix on TT spectrum M. Calabrese, SWG CMB-XC, Orsay 21 March 2019

Cov. on lensed BB

primordial-CMB + DEMNUni-Convergence using LensPix \rightarrow Covariance Matrix on TT, EE and BB spectrum

BB: CMB + Lensed(DEMNUni) \rightarrow Covariance Matrix on BB spectrum

Covariances from Particle grids: WL(z=2) auto-spec.

Cov. from Particle grids: WL(euclid) x kCMB

Cov. from Particle grids: WL(euclid) x WL(euclid)

Recap and conclusions Finally!

What we have so far...

- N-body numerical simulations in different cosmologies:
 - \rightarrow Objective 1: cosmology-dependent covariances Matrix from Numerical simulations
- 2D healpix maps for different lensing observables
 → Objective 2: Covariances from different observables (k-CMB, WL, ISW, lensed-CMB,...)
 → Objective 3: Impact of non-linearities and off-diagonal terms on covariances matrix
- Numerical simulation to forecast model accuracy and estimations:
 → Objective 4: Signal-to-noise ratio measurement and its impact
- Lightcone and map-making
 - \rightarrow Objective 5: Potential grids vs particle grids
 - \rightarrow Weak Lensing Convergence maps \rightarrow tomographic covariances with Euclid-n(z) sources
- Cross correlation between different lensing observables
 - \rightarrow Objective 6: Cross correlation CMB-Temperature (lensed) X WeakLensing
 - \rightarrow tomographic covariances of Tk cross-correlation with Euclid-n(z) sources

M. Calabrese, SWG CMB-XC, Orsay 21 March 2019

... what we plan to do

• Ga \rightarrow • Ne Hu	alaxy maps from simulations (in different cosmologies) → SHAM methods — Cross (CMB-Convergence / WL-Convergence) X (Galaxies) → HOD methods — Cross (CMB-Convergence / WL-Convergence) X (Cluster / SZ) ew covariances from different observables: ISW and Lensing potential reconstruction from u&Okamoto	WIP
 Cr Cc Ne 	ross correlation (T-ISW) X (CMB-Convergence / Lensed CMB) omparison Born approximation vs Multiple Lens CMB-lensing and WL covariances lew obsevables extracted from simulations, e.g. SZ or Voids	Planned/next

Thanks. calabrese@oavda.it