Science Performances Verifications

Hervé Aussel AIM Paris-Saclay

H. Aussel - SPV SWG-xCMB @ IAS, Mar 22, 2019 🔯 eüčlid

Euclid top science requirements

R-LO	The Euclid Mission will by itself allow us to
	 understand the nature of the apparent acceleration of the Universe and
	test gravity on cosmological scales
	from the measurement of the cosmic expansion history and the growth rate of structures.
R-L0.1	To determine the nature of the apparent acceleration, Euclid will distinguish effects produced by a cosmological constant from those produced by a dynamical dark energy. This must be done by achieving a minimum $FoM \ge 400$ from Euclid data alone.
R-L0.2	To experience effects of gravity on cosmological scales, Euclid will probe the growth of structure and will separately constrain the two relativistic potentials, Ψ and Φ . This can be done by achieving an absolute 1 σ precision of 0.02 on the growth index, γ , from Euclid data alone.

- All requirements on the Euclid Mission (survey, instrument, satellites, data processing) are derived from these two requirements.
- SPV are exercises where the mission is simulated using CBE to check these two top level requirements are met.

 SPV2 to *inform* MCDR
 Derive FoM and accuracy on γ using Fisher Matrix formalism for the combined probes GCs and WL

$$FoM = \frac{1}{\left[\det(C_{w_0, w_a})\right]^{1/2}}$$

$$f(z) = d \ln \delta_m / d \ln a = \Omega_m(z)^{\gamma}$$

• Also derive biases for WL

Construm	Euclid Mission Performance Document	Ref.:	EUCL-IAP-EUC-DP-00244
		Issue:	2.0
		Date:	04/10/2018
		Page:	1/130

Title:	Euclid Mission Perfomance Document		
Date:	October 4, 2018	Teeno	20
Reference:	EUCL-IAP-EUC-DP-00244	155uc.	2.0
Custodian:	Hervé Aussel		

Authors:	Position:	Date:	Signature:
H. Aussel	SPV Lead		
F. Bernardeau	EC Deputy Lead		
M. Bolzonella	SWG-CS		
C. Carbone	IST:Forecast BGC Coord.		
V. Cardone	IST:Forecast BWL Coord.		
F. J. Castander	SWG-CS		
M. Cropper	SWG-WL		
P. Fosalba	SWG-CS Lead		
B. Garilli	SWG-GC E2E Lead		
B. Granett	SWG-GC E2E Lead		
L. Guzzo	SWG-GC Lead		
H. Hoekstra	SWG-WL Lead	October 4, 2018	
D. Markovic	SWG-GC E2E Lead		
T. Kitching	SWG-WL Lead		
Y. Mellier	EC Lead		
S. Paltani	OU-PHZ Lead		
P. Paykari	SWG-WL		
W. Percival	SWG-GC Lead		
L. Pozzetti	SWG-CS GC		
D. Sapone	IST:Forecast BGC Coord.		
R. Scaramella	ECSURV Lead		
J. Stadel	SWG-CS		
Y. Wang	SWG-GC Lead		

H. Aussel - SPV

SWG-xCMB @ IAS, Mar 22, 2019 🔇 🏽 🖉 Öüülid

- SPV2 was run 2017-2019 to inform MCDR
 - Delivery of <u>MPD V2.0</u> oct 4, 2018
 - Updated results presented oct 19, 2018:
 - scenarios for DR1 and DR3
 - effects of modelling of Hα emitters
 - Assumptions on the parameters allowed to be fixed.
 - Updates presented at MCDR panel meetings
 - When the exercise is completed, version 2.1 of the MPD will be issued.

euclid consort um	Euclid Mission Performance Document	Ref.: Issue: Date: Page:	EUCL-IAP-EUC-DP-00244 2.0 04/10/2018 1/130
----------------------	---	-----------------------------------	---

Title:	Euclid Mission Perfomance Document		
Date:	October 4, 2018	Teeno	20
Reference:	EUCL-IAP-EUC-DP-00244	155uc.	2.0
Custodian:	Hervé Aussel		

Authors:	Position:	Date:	Signature:
H. Aussel	SPV Lead		
F. Bernardeau	EC Deputy Lead		
M. Bolzonella	SWG-CS		
C. Carbone	IST:Forecast BGC Coord.		
V. Cardone	IST:Forecast BWL Coord.		
F. J. Castander	SWG-CS		
M. Cropper	SWG-WL		
P. Fosalba	SWG-CS Lead		
B. Garilli	SWG-GC E2E Lead		
B. Granett	SWG-GC E2E Lead		
L. Guzzo	SWG-GC Lead		
H. Hoekstra	SWG-WL Lead	October 4, 2018	
D. Markovic	SWG-GC E2E Lead		
T. Kitching	SWG-WL Lead		
Y. Mellier	EC Lead		
S. Paltani	OU-PHZ Lead		
P. Paykari	SWG-WL		
W. Percival	SWG-GC Lead		
L. Pozzetti	SWG-CS GC		
D. Sapone	IST:Forecast BGC Coord.		
R. Scaramella	ECSURV Lead		
J. Stadel	SWG-CS		
Y. Wang	SWG-GC Lead		

H. Aussel - SPV

SWG-xCMB @ IAS, Mar 22, 2019 🔇 🐼 eüclid

H. Aussel - SPV

SWG-xCMB @ IAS, Mar 22, 2019 🛛 🕸 eüclid

Rucid

H. Aussel - SPV

SWG-xCMB @ IAS, Mar 22, 2019 () eüclid

H. Aussel - SPV

SWG-xCMB @ IAS, Mar 22, 2019 🛛 🐼 ĕüčlid

Euclid

H. Aussel - SPV

SWG-xCMB @ IAS, Mar 22, 2019 () eüclid

H. Aussel - SPV

SWG-xCMB @ IAS, Mar 22, 2019 🛛 🕸 eüclid

SPV2 Survey and External Data

- BOSS
 - Only external prior SPV2 Inputs to compensate loss of redshift coverage
- Survey:
 - Provided by EC-SURVEY, described in MOCD-B
- EXT
 - Euclidized photometric data.
 - Depending on availability, various scenarios are possible.

H. Aussel - SPV

SWG-xCMB @ IAS, Mar 22, 2019 🛛 🕸 euclid

SPV2 Survey

- SPV 2 survey:
 - 15459 sq. deg. observed in 5.85 yr.

H. Aussel - SPV

- Optimized for GCs
- BOSS data to make up for the loss of redshift coverage with the switch to a Wide survey with the red grism only.

eüclid

SWG-xCMB @ IAS, Mar 22, 2019

SPV2 Scenarios: "DR1"

- DR1 : after 1 year of survey. 2800 square degree
 - 1400 square degree in the South over DES
 - 1400 square degree in the North over UNIONS

SWG-xCMB @ IAS, Mar 22, 2019 🛛 🕸 euclid

SPV2 Scenarios: "DR3 best"

- DR3 best: end of mission with SPV2 survey, 15459 square degree
 - Assumes LSST coverage $\delta < 30^{\circ}$
 - Assumes UNIONS coverage at $\delta > 30^{\circ}$ match SPV2 survey

SPV2 Scenarios: "DR3 secure"

- DR3 best: end of mission with SPV2 survey, 15459 square degree
 - Assumes LSST coverage $\delta < 0^{\rm o}$
 - Assumes UNIONS coverage at δ > 30° match SPV2 survey (different from v2.0 secure definition that uses PS2 DR1 depths)
 - Loss of \approx 2000 square degree for WL (but not for GCs)

H. Aussel - SPV

SWG-xCMB @ IAS, Mar 22, 2019 🛛 🕸 eüclid

SPV2 NISP Spectroscopy

- BOSS
 - Only external prior spv2 Inputs to compensate loss
 of redshift coverage-----
- Survey:
 - Provided by EC-SURVEY, described in MOCD-B
- EXT
 - Euclidized photometric data.
 - Depending on availability, various scenarios are possible

SWG-xCMB @ IAS, Mar 22, 2019 🔇 🐼 ĕüčlid

SPV2 GCs

Flagship 1.5.2 (Halpha+[NII])

- Conservative H number counts: Pozzetti+16 model3 used
- WISP counts from Bagley+18
- Additional simulations are being run with model1

H. Aussel - SPV SWG-xCMB @ IAS, Mar 22, 2019 🛞 eüclid

SPV2 NISP Spectroscopy: fastTIPS + AMAZED - Pypelid

- Pypelid is the GC Bypass.
- It is calibrated against E2E simulations with SGS tools
 - OU-SIM fastTIPS to produce 1D spectra.
 - OU-SPE AMAZED for the redshift measurement.
- Both tools have been debugged by SPV2:
 - Good agreement on the fluxes and lines profiles and position
 - Good agreement on the redshift measurement
 - Pypelid noise > fastTIPS noise, but this has been traced to a problem with fastTIPS.

SWG-xCMB @ IAS, Mar 22, 2019 🔇 🕸 Öüülid

SPV2 GCs Bypass

H. Aussel - SPV

SWG-xCMB @ IAS, Mar 22, 2019 🔇 🏟 Öüčlid

GCs FoM and accuracy on γ

SWG-xCMB @ IAS, Mar 22, 2019 🔇 🏟 Öüülid

H. Aussel - SPV

SPV2 Weak Lensing

 WL FoM is derived from the N(z) of sources with a shape measurement and the precision of the photometric redshifts for the characterisation of the tomographic bins.

SWG-xCMB @ IAS, Mar 22, 2019 🔇 🏟 Öüülid

OU-PHZ redshift determination

Bin	z_{il}	z_{iu}
1	0.200	0.362
2	0.362	0.497
3	0.497	0.634
4	0.634	0.734
5	0.734	0.843
6	0.843	0.948
7	0.948	1.086
8	1.086	1.254
9	1.254	1.523
10	1.523	2.000

 Use Phosphoros to test photometric redshifts quality

SWG-xCMB @ IAS, Mar 22, 2019 🔇 🏟 Öüülid

OU-PHZ redshift determination

Bin	DR1 South	DR1 North	DR3 South	DR3 North
1	0.71	0.76	0.84	0.86
2	0.86	0.85	0.90	0.90
3	0.74	0.82	0.87	0.84
4	0.73	0.80	0.86	0.84
5	0.85	0.84	0.91	0.90
6	0.94	0.91	0.96	0.95
7	0.88	0.87	0.92	0.90
8	0.90	0.90	0.94	0.93
9	0.91	0.90	0.93	0.92
10	0.84	0.82	0.88	0.87

- OU-PHZ requirements:
 - Tails:
 - 90% of the stacked distribution should lie within 0.15(1+z)
- This requirement does not apply to the bins individually
- Values in bold meet the requirement per bin
- DR3 South meets the requirement

SWG-xCMB @ IAS, Mar 22, 2019 🛛 🕸 Öüülid

SPV2 Combined FoM

- GCs and WL FoM are combined assuming independence.
- This approximation is valid because the two samples are disjoint.

SWG-xCMB @ IAS, Mar 22, 2019 🜘 🕲 Öüclid

SPV2 hypothesis

	Red Book	MPD v 2.0	MPD v 2.1
Area	15000 sq. deg.	15454 sq. deg. DR3 best	15454 sq. deg. DR3 best, DR3 secure & DR1
PHZ	no outliers $\sigma(z)/(1 + z) = 0.05$ 10 redshift bins 0.001 < z < 2.5	10% outliers $\sigma(z)/(1 + z) = 0.05$ 10 redshift bins 0.001 < z < 2.5	outliers from OU-PHZ (< 10%) σ(z) from OU-PHZ for each bin 10 redshift bins 0.2 < z < 2.0
GCs	N(z): Geach+10 0.7 < z < 2.0	N(z): Pozzetti+16 model3 0.9 < z < 1.8 + BOSS prior	N(z): Pozzetti+16 model1 and 3 0.9 < z < 1.8 + BOSS prior
WL	30 arcmin ² 123 x 123 FM IA prior Imax=5000	30 arcmin ² 22 x 22 FM No IA prior Imax=3000 and 5000	30 arcmin ² 22 x 22 FM No IA prior Imax=3000 and 5000 25% degradation for non- gaussian covariance
GCs	linear BAO peak: k _{max} = 0.2 h/Mpc	non-linear BAO damping: $k_{max} = 0.3 h/Mpc$ σ_{p}, σ_{v} fixed or free	non-linear BAO damping: $k_{max} = 0.3 h/Mpc$ σ_{p}, σ_{v} fixed, free, BAO reconstruction

SWG-xCMB @ IAS, Mar 22, 2019 🛛 🕸 eüclid

H. Aussel - SPV

SPV2 Combined FoM

	FoM Model3 I _{max} =3000	FoM Model3 I _{max} =5000	FoM Model1 I _{max} =3000	FoM Model1 I _{max} =5000
v 2.0 DR3 best	227	347 (400 fixing σ_{p} and σ_{v})	n/a	n/a
v 2.1 DR1	31	54	34	57
v 2.1 DR3 secure	202	360	241	408
v 2.1 DR3 best	223	400	263	449

- Uses realistic option for GCs to account for BAO reconstruction for the treatment of $\sigma_{\rm p}$ and $\sigma_{\rm v}$
- The goal of 400 can be reached when pushing the analysis to $I_{\rm max}=5000\,$ in the non linear regime.

SWG-xCMB @ IAS, Mar 22, 2019 () Eüčlid

SPV2 Combined FoM

	FoM Model3 I _{max} =3000	FoM Model3 I _{max} =5000	FoM Model1 I _{max} =3000	FoM Model1 I _{max} =5000
v 2.0 DR3 best	227	$\begin{array}{c} 347 \\ (400 \text{ fixing } \sigma_{\text{p}} \text{ and } \sigma_{\text{v}}) \end{array}$	n/a	n/a
v 2.1 DR1	31	54	34	57
v 2.1 DR3 secure	202	360	241	408
v 2.1 DR3 best	223	400	263	449

- Uses realistic option for GCs to account for BAO reconstruction for the treatment of $\sigma_{\rm p}$ and $\sigma_{\rm v}$
- The goal of 400 can be reached when pushing the analysis to $I_{\rm max}=5000\,$ in the non linear regime.

SWG-xCMB @ IAS, Mar 22, 2019 () Euclid

SPV2 Accuracy on γ

	FoM Model3 I _{max} =3000	FoM Model3 I _{max} =5000	FoM Model1 I _{max} =3000	FoM Model1 I _{max} =5000
v 2.0 DR3 best	0.019	0.019	n/a	n/a
v 2.1 DR1	0.063	0.059	0.060	0.057
v 2.1 DR3 secure	0.028	0.027	0.024	0.023
v 2.1 DR3 best	0.027	0.026	0.024	0.023

- Uses realistic option for GCs to account for BAO reconstruction for the treatment of σ_p and σ_v
- The loss of redshift coverage between v2.0 and v2.1 (v 2.0: 0.001<z<2.0 v 2.1: 0.02<z<2.0) results in a loss of accuracy on γ.
- SPV2 is investigating to use the full flagship redshift range.

SPV2 Accuracy on γ

	FoM Model3 I _{max} =3000	FoM Model3 I _{max} =5000	FoM Model1 I _{max} =3000	FoM Model1 I _{max} =5000
v 2.0 DR3 best	0.019	0.019	n/a	n/a
v 2.1 DR1	0.063	0.059	0.060	0.057
v 2.1 DR3 secure	0.028	0.027	0.024	0.023
v 2.1 DR3 best	0.027	0.026	0.024	0.023

- Uses realistic option for GCs to account for BAO reconstruction for the treatment of $\sigma_{\rm p}$ and $\sigma_{\rm v}$
- The loss of redshift coverage between v2.0 and v2.1 $\,$
 - (v 2.0: 0.001 < z < 2.5 v 2.1: 0.2 < z < 2.0) results in a loss of accuracy on γ .
- SPV2 is investigating to use the full flagship redshift range.

SPV2 WL bypass

 Derive an impact of systematics on the FoM (WL only) and the biases introduced on the DE equation of state parameters.

H. Aussel - SPV

SWG-xCMB @ IAS, Mar 22, 2019 🔇 🏽 🖉 Öüülid

Conclusions for SPV2

- FoM and accuracy on γ meet the requirements
- The assumptions on the GCs are using conservative number counts and transmissions, and there is margin in the optic transmission from MCDR.
- WL forecast are using an a VIS instrument as required, except for the QE measurements. Testing of FM will be important to check that CTI is behaving as the models predict.
- PHZ quality show that it will be close to requirements using the template fitting code. There is a margin of improvement using neural network code. It will be important to secure the 2000 sq degree of LSST coverage $0 < \delta < 30^{\circ}$ as it translate into a 10% loss on the FoM
- SPV2 is ongoing and will be completed in April 2019 when all the calibrations runs are completed. Version 2.1 of MPD will be issued with final results.

SWG-xCMB @ IAS, Mar 22, 2019 () eüčlid

- Study the feasibility of the Wide calibration derived from the Deep survey.
- Conduct a joint study of the GCs and WL probes, as these calibrations break their independence.
- Use a full likelihood analysis using the IST:Likelihood codes.
- Calibrate all bypasses with full E2E SGS processing.
 - Will only be possible with SC8
- Add other cosmological probes if possible (but the requirement remain on GCs + WL).

Flagship 2.0 Reference

- Flat Standard LCDM with massive neutrinos and radiation fluctuations as well as GR corrections.
- $\Omega m = 0.319$
- $\Omega b = 0.049$
- $\Omega \Lambda = 0.681 \Omega RAD \Omega v \P$
- $\Sigma mv = 0.06 \text{ ev}$ (minimal, with linear fluctuations)

H. Aussel - SPV

- TCMB= 2.7255 K (to determine RAD, with linear fluctuations)
- $\sigma 8 = 0.83$ (maybe we should shift to specifying As now instead)

SWG-xCMB @ IAS, Mar 22, 2019 🛽 🕸 Öüülid

- h = 0.67
- ns= 0.96
- w0 = -1
- wa= 0
- zstart = 200

Flagship 2.0 Resolution and size

- Wide
 - Particle mass = $1 \times 10^9 \text{ h}^{-1} \text{ M}$
 - Box side length = $3600 \text{ h}^{-1} \text{ Mpc}$
 - Derived quantities
 - Mean interparticle separation = 0.224 h^{-1} Mpc
 - Mean particle density = $88.54 h^3 Mpc^{-3}$
 - Particle Number = $16000^3 = 4.13$ trillion
 - Output:
 - Full-sky light cone to a depth z < 2.3 particles and Rockstar Halos
 - Healpix maps of projected masses, velocities, potentials and time derivative of potentials.
 - Rockstar (and FoF) halos at 100 time slices
 - Merger trees of halos and orphaned galaxies in time slices and in the light cone
 - Power spectrum on 100 time slices (no time to implement bispectrum)

H. Aussel - SPV SWG-xCMB @ IAS, Mar 22, 2019 🛞 eüclid

Flagship 2.0 Resolution and size

- Deep
 - Particle mass = $1 \times 10^8 \text{ h}^{-1} \text{ M}$
 - Box side length = $1000 \text{ h}^{-1} \text{ Mpc}$
 - Derived quantities
 - Mean interparticle separation = $0.104 \text{ h}^{-1} \text{ Mpc}$
 - Mean particle density = $885 h^3 Mpc^{-3}$
 - Particle Number = $9600^3 = 885$ billion
 - Output
 - 10 light cone beams of 20 sq.deg to a depth z < 5 particles and Rockstar Halos
 - Sparse Healpix maps of projected masses, velocities, potentials and time derivative of potentials.
 - Rockstar (and FoF) halos at 100 time slices
 - Merger trees of halos and orphaned galaxies in time slices and in the light cone
 - Power spectrum and bispectrum on 100 time slices

- For now, only M200b outputted.
- Discussion to have on the injection of galaxies.

H. Aussel - SPV SWG-xCMB @ IAS, Mar 22, 2019 🛞 eüclid